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Abstract—In general, inelastic deformation is accompanied by internal mechanical stresses which
also persist in the absence of external loads. A fundamental quantity for determining the state is
the stress function tensor (or tensor potential). a field which can be calculated in terms of the
incompatibility tensor, also a field. This tensor is not given a priori. but follows from the physics
of the problem. Differentiul geometry is a most important and elegant tool to deal with the internal
mechanical state, both on the geometric and on the static side (the concept of mutually dual strain
state and stress state). I stress-free strain is the cause of the internal stresses, then Riemannian
geometry is adequate. More general geometries describe defects. numely Riemann-Cartan geometry
describes dislocations in the form of Cartan’s torsion of the strain space, and nonmetric (affine)
geometry the point defects vacancy, self-interstitial and shear fault in the form of nonmetricity (a
tensor field) of the strain space. The specific response to dislocations is torque stress which arises
as Cartan’s torsion of the stress spitce, whereas that to point defects is moment stress without torque
entering as the nonmetricity of the stress space. The fundamental duality between strain space and
stress space gives the theory a particular symmetry. Physical realizations of such (material) spaces
are the afline puoint structures, ¢.g. the Bravais lattices.

I. INTRODUCTION
The internal mechanical state ts the stress -strain state which persists without the action of
external forees or loads. In the relatively restricted ficld of the common lincar clasticity
theory it sutisfies the field equations

— """ 0,0k, = 0" compatibility (1)
6" =0, 6" =g¢" equilibrium, )
and the constitutive law
1 AR e o i 3
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where
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We do not write down the boundary conditions for stress and strain, because their treatment
is of a more technical nature and does not give us much physical insight.

In (1) the symmoetric tensor g is the so-called incompatibility tensor. It measures the
deviation from compatibility which is the special case for § = 0. Incompatibility arises when
nonfitting material elements are forced by elastic deformation to form a compact body.
Only in the compatible case can the strain ficld be represented as the (symmetrized) gradient
of the elastic vector ficld of displacements. This situation would arise if we considered the
external load problem. in which, beside n = 0, the volume density of external forces would
occur, namely in egn (2).

For the internal stress problem it is suggestive, although not the only possibility, to
satisfy identically the equilibrium equations by the stress function ansatz (Beltrami, 1892
Kroner, 1954, 1953):
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where for obvious reasons the symmetric tensor y is called the second-order stress function
or tensor potential. Note that Airy’s stress function is a special case of .

If (5) 1s now substituted in (1) via part 2 of (3) we obtain the field equation for . For
elastic isotropy

Ci}‘kt = ’Eéi;ékl + ‘“((5&(511 + (Srlégk ) (6}

o i
x:’j - :27‘ (Ii]“ m:; Xa‘){;) . (7)

If (5) with (3). (4) and (6) s substituted in (1) we obtain. after a simple calculation, the
field equation for y":

de'{I = Mip ‘7,)(;; = 0. (8)

The solution of this equation leads to the internal stress state via (7) and (5). Note that (8)
has a particularly simple Green's function.

Equation (8) contains an extra, or gauge, condition which has to do with the fact that
¥ is not uniquely defined by (5). In this respect. y is analogous to the vector potential A of
clectrodynamics. Like A, also y is a fundamental quantity of the theory.

Naturally, the anisotropic stress function ansatz is much more involved. Its general
form has been found only recently (Kréner, 1990a). Let

Dy(V) = ~ ¢ty o3
D:(v) = gﬁtlmt{:]{ﬂ[)M(V)D"m(v) ( 10)
/(V) = })I:fk”}{:j[lt DuDlenm ( l i }

be the fundamental differential operators of anisotropic linear elasticity theory. Look for
4 (symmetric) tensor potential ¥, such that

SV =y Oty = 0. {12

A routine calculation yields
o= YV, (13
Y:}ﬂ(v) = .%l:!]!f83&03!r('i]7,“"{}q7r!1rD:Q(v)‘ (54}

Since fourfold differentiations are needed to get the stress from the tensor potential ¢, this
one might also be called the fourth-order stress function (tensor). Of course, the ansatz
(13, 14) is also valid in the isotropic case, where f(V) ~ V.

Note that the scalar sixth-order differential operator f(V) is the same as that which
arises in other anisotropic elastic problems, e.g. those with external loads. All knowledge
accumulated in these cases (concerning f) can be utilized also in our present problem. In
particular, much is known about the Green’s function of the operator f(V).

Within the frame of continuum mechanics it is clear how the internal mechanical state
can be calculated, once the distribution of stress-strain sources, i.e. the tensor field #n is
known. Usually, however, 5 is not given a priori but has to be found from the physics of
the problem. To get some general view on this is the topic of the present article, On this
occasion we can also learn something about the nonlinear theory. In fact, it has proven
most useful to apply to our problem the mathematical language of differential geometry,
which is basically nonlinear and well elaborated.
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2. DIFFERENTIAL GEOMETRY IN CONTINUUM MECHANICS

The general concept of using differential geometry in continuum mechanics is that the
material medium is treated as a continuous material space which is embedded into the
three-dimensional physical, i.e. Euclidean. space and can be deformed there. This means
that the geometries for two spaces must be distinguished. A fundamental question is then:
if the geometry of the embedding space is Euclidean, what is the geometry of the material
space. sometimes called the inner geometry?

The most important characteristic of the Euclidean space is that it has no curvature. If
the material space had curvature. then it would not fit into the Euclidean space ; hence the
material space should be flat (have no curvature). Such spaces are also said to have
teleparallelism. A flat space is not necessarily Euclidean, but can have additional structure.
This has been studied above all under the condition of the so-called affinely connected, i.c.
locally affine, spaces. The result is that a flat, locally affine space can have two types of
structure which go beyond euclidean and even Riemannian geometry : the first one is Cartan’s
torsion and s representative of the elementary line defects (dislocations) in Bravais crystals,
whereas the second one is the nommetricity (see Schouten, 1954) and describes the elementary
point defects (vacancy. sclt-interstitial. shear defect) in Bravais crystals. The distinct role
of Bravais lattices with respect to affine differential geometry has to do with the fact that
these lattices themselves have an atline structure.

3. RIEMANNIAN GEOMETRY AND STRESS FREE STRAIN

3.1. The strain space

It has been knowa for a tong time that the compatibility equations of clasticity theory
can be formutated as the vanishing of the curvature tensor K%, formed with a Riemannian
connection ¢h,. a Christoflcl symbol. This connection is a special case of the connection I'%,
of the general aflinely connected space. We have

“/::vl = .‘I”A.‘/rnll. = .E.l/m‘ (nm‘(/kl - (-)k .{/Im + 0/“11'11. )- ( ] 5)
with g,, as the metric tensor. The curvature tensors are
I\’:ml = 2(“‘11”{‘1:1 +yﬁ/:y{:d)[nm] (16)
for the Riemannian geometry and
R:ml = 2((711 rfnl+ rﬁp rt::l)[nm] (17)
for the more general affine space. The subscript [n, m] denotes antisymmetrization in n, m.
Note that Ricmannian geometry is charucterized by %, = ¢%,. If we use, in well-known
notation, &, = (¢, — dy)/2 for the strain tensor in Eulerian description, then K%, =0 is
indeed the compatibility equation for the strain. It can easily be written down in full
nonlincarity.
The general solution of K}, = 0, expressed in ¢%,, is (check!)
Gou = A0l . AiAS = 0f AFAL =6k, kk =1,2.3. (18)
The (3 x 3)-matrix A is subject to the condition that by definition g%, is symmetric in »1, /.
[t is convenient and admissible to understand A as the matrix of a point transformation (a
deformation) from an initial to a current state. If in the latter we use a coordinate cover
(k") which is dragged along from the cover (k) of the initial system, then

de' = AL de, de = Ab de (9)

Because of the symmetry of g%,
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Cpdl =Gy, = 0. (20)
This means compatibility. In fact. (20) implies
A =00+l (21)

where u is the displacement field and 4} the deformation gradient. The equationg = A~ A"
is easily proved. Here AT is the transposed matrix.

So far nothing has been said in this section about the physical nature of the displacement
field. If the displacements are elastic. i.e. their gradient is related to the stress, then the
problem is one of external sources which we do not consider.

Suppose that now the strain g is a superposition of elastic strain and some spontaneous
stress-free strain, say g*. Then the elastic and stress-free strain taken separately do not
satisfy the compatibility equations ; only the total strain, which is a sum of the single strains
in the lincarized theory, does this. In this case, the incompatibility tensor needed in the
formalism of eqns (1)-(4) can be calculated as

[T R VT T B R TS
n'o= et e e (22)

It is not particularly difficult to obtain the corresponding result for the nonlinear case, but
we do not need this for our further reasoning.

The cuauses for stress-free strain may be multifarious  temperature, magnetization,
electric polanization and others, However, we have a different situation if defects are the
sources of internal stress. This problem is treated in the next section,

Here we recall a result well-known from Einstein's relativity theory, namely that every
Riemann tensor can, without loss of information, be replaced by the Einstein tensor,
denoted by £

Al WU T I S
A T A (23)

This formula may be used in three dimensions only,
Due to its definition the Riemann tensor satisfics two identities, in recent literature
called the first and second Bianchi identities. Written tor the Einstenn tensor they are

EV=FE", VET =0, (24)

with V, the symbol of covariant (with respect to ¢4, differentiation. Every tensor satistying
(24) can be considered as the Einstein tensor of some Riemannian space defined with the
help of E.

3.2, The stress spuce

Now compare (24) with (2). The form of these equations is rather similar, the difference
lying in the two kinds of differentiation.

Note that this dilference disappears in the lincar approximation, where V, — 0,. The
similarity has become the basis of Schacfer’s (1953) analogy between the statics (in the
absence of body lorces) and the lincarized static theory of general refativity. Recall that in
Eulerian (Cartesian) coordinates (2) holds in the nonlincar theory. too.

In Schacfer's analogy, which was later extended by Minagawa (1962) and by Kondo
(1962). the stress tensor o is the Einstein tensor of a space which is now called stress space
or, even better. though less convenient, stress function space. The point is that like the
strain. so also does the stress function play the role of a metric. This follows from the
comparison of (1) and (5) where g is analog to x and 5 to .

The analogy would not be very useful, were it restricted to the linearized theory. I have
shown recently (Kréner, 1987), that by a slight modification the analogy can be made true
also for nonlinear media in the situation of Riemannian geometry. It was proved that a
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stress tensor £”, called the Riemann stress. can be defined such that the equilibrium
equations assume the form

V=0, IV=1I" (23)

Here V* is the symbol of covariant differentiation, but now not in the strain space, where
we use V,, but in the stress space defined by X. In fact. (25) can be understood as the Bianchi
identities of the stress space. Therefore it is possible to introduce a Christoffel symbol, say
x%.. whose metric is closely related to the former stress function. The fulfillment of (25)
implies that of (2) and vice versa. This means that £ and ¢” can be mutually converted
(Kroner, 1987).

[t is common to define stress tensors by forces acting on area elements. The question
then arises whether area elements in the reference or current state are meant. For the
definition of Riemann stress we need an area element of the riemannian stress space. Thus
the Riemann stress tensor represents the contact force acting on the area element of the
Riemannian space which itself is determined by the stress. Of course, the geometry is that
of the current state.

At first sight the concept of Ricmann stress appears strange, in particular as to
practicability. It has, however. the agrecable quality, from a theoretical standpoint, that
differential gecometry can be used for static problems just as it is used in the strain space.
All static and geometric equations are then exact. Note that the stress space has not the
same units as the strain space. For instance, the metric y is not dimensionless. This apparent
shortcoming can casily be reconciled.

Consider the ditferential form

dv =dx-A (26)
of (19), now written in a new form. In (26) dx"is the relative “placement™ of two neighboring
points of the material medium, whose relative position in some initial state is d.<.

In the stress space we assign a relative foree

df =d¥"+ ¢ (27

to the relative placement d¥” and in this way define the (3 x 3)-matrix . Since we develop
a differential geometry. it is convenient to give df the dimension of a length—then eqns
(26) and (27) are equivalent, except for the different meaning of the letters. We may give
df and ¢ the new dimensions by the introduction of “new” df and ¢ which result from the
“old™ df and ¢ by multiplication with a constant of dimension [force/length] *'. We then
form the metric tundamental form with the new quantities as

df-df = di-g-g'-dy' = dieg-dif, (28)

where all quantitics have the dimensions of common differential geometry. As we had
g=A-A", we now have = @-¢". In this section we have studied the relation between
riemannian geometry and clasticity, in particular with the theory of the internal state.
Ricmannian geometry is relevant to situations where, due to some physical conditions, a
stress-free strain develops. This is not the case of defects. To treat these, we have to go
beyond Ricmannian geometry. This will be done in the next section.

4. AFFINE DIFFERENTIAL GEOMETRY AND DEFECTS

4.1. The strain space

Bravais crystals are affine structures and therefore distinct with respect to affine
differential geometry. To discuss some features of this geometry we introduce the abbrevi-
ation (Schouten. 1954)
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@ omik;, = Pk = Qi + Piwis (29)

vahd for any quantity with three lower indices.
We define also Cartan’s torsion by

Sou = r{mm— (30)
with I, = ¢" T, as the connection and
Qm/k = _‘Vm.q{l\ (31)

as the nonmetricity of the (material) space. Here V,, is the symbol of covariant differ-
entiation. now with respect to the connection I, rather than to the ChristofTel symbol
used in the Riemannian geometry. Finally we define

- 1A
Gon = 1Cabu. (32)

Utilizing the permutation prescription of (29) we can write down and prove easily the
identity (Schouten, 1954)

rm//. = (;;m/./: _S;mA/: + EQ‘mu; (33)
or
F= 1G-S/ +10Q). (34)

which is valid for G, S and Q as defined by (30) (32). It is casy to prove that S and Q.
hence also {S) and [Q} are tensors. S, 1s antisymmetric in m, k. and Q,,;, is symmetric in
k. L Henee (S} and {Q) describe different things. {Gl, finally, is a Riemann conncection,
i.¢. a Christoflel symbol, therefore not a tensor.

In the last section we have discussed the Christoffel symbol in connection with stress-
free strain. For simplicity we shall now assume that such stress-free strain is absent. We
shall, however, also now study a situation of teleparallelism, 1.e. R, = 0. The general
solution of this equation has the saume form as that of K., = 0. namely

Chy = A} 0,47 (35)

where the matrix A 1s now arbitrary, because I is no longer symmetric. The form (33) of
the connection determines also the form of the torsion as

fnl = L”: (nm““\' -‘—(“I'A'fn)' (36)

Vanishing of S yields the former result Af = d; + ', which means that nonvanishing
torsion leads to an incompatible situation.

All this has been discussed in the literature and is now well-known. Let us then come
to the less-known case of the nonmetricity [Q!. Our starting point is Schouten’s third
identity for the curvature tensor,

R,.mqm = V[an]l/v+‘S‘{;mQ1vlk~ (37)

Note that all identities of the curvature teusor originate from definition (17). In our case
of teleparallclism R,y = 0 and after a short calculation (37) becomes
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(Eanlk - r’:lQmpk - rngmlp)[nml =0. (38)

I is now given by (35). Every function Q satisfying (38) has the form —V_g, and is
therefore admissible in (34).
The linearized general solution of (38) is

Qi = Cmhy (39

with an arbitrary symmetric tensor field 4,. Now recall that the tensor g occurring in {G}
is given by g = A- AT for the connection —G + S, For such a metric connection
(Schouten. 1954) the length measurement is directly bound to the law of parallel dis-
placement with the help of the connection. For instance. when a lattice vector s parallel
displaced (using ') along itself. say 1000 times, then its start and goal are separated by
1000 atomic spacings. The result of this counting is measured by g,,. Because the result of
the measurement by parallel displacement and by counting lattice steps is the same, we say
that the space is metric with respect to the connection T

This is no longer so in the nonmetric situation. Now g # A - AT because of the entering
of Q (or h) in (33). We now have, in linear approximation,

g=A"AT+h, (40)

so that h is a mecasure of how much the metric g must be changed due to a nonmetric
contribution to the connection. Physically, the nonmetricity enters in the form of the
clementary points defects. For instance, vacancies which are not regarded in the step
counting shorten the distance between two points. It follows that h, thus Q. is a measure
of the density of the point defects. All this has been worked out recently (Kroner, 1990) by
a more formal nonlincar consideration which, however, has not yct been matched to the
present theory.

4.2. The stress spuce
Since here we deal with the more general affine geometry, the Bianchi identities also
take a more general form. They read (Schouten, 1954)

(Rﬁml - 2VnanI + 4Sf::ilsfy)[nl"ll =0 (4 l )
and
(VpR:mI—2SZanmll)(/mm] =0. (42)
The general affine curvature (or non-Riemannian curvature) tensor R cannot be replaced by
an Einstein tensor—only that part of R which is antisymmetric in both n, n1and /, k.
If, however, Q = 0, then covariant derivation and raising and lowering of indices

commute and R becomes antisymmetric also in /, k. Lowering k and multiplying by &*¢"™
in (41) and (42) leads to

dive S4+2E =0 Ist Bianchi (43)
dive E =0 2nd Bianchi, (44)

where
(dive), = V,+257, (45)

is the divergence operation in a space with torsion and
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Ek = %8,,&5”. S"k = ‘CHMISl:-m. (46)

As shown by Stojanovic (1963) and by Kroner (1963) eqns (43) and (44) have exactly the
form of the equilibrium equations of a material medium with force and torque stresses if
E is now interpreted as the (in general nonsymmetric) Riemann-Cartan force stress and S
as the (Riemann-Cartan) torque stress. The general solution of these equations is easily
written down in terms of stress functions and torsion of the stress space. and obviously, the
latter represents the torque stress. [t should be clear by now that the concept of stress space
works also in the presence of dislocations. The torque stresses are the specific response to
dislocations. If S = 0. but Q # 0. then the Bianchi identities reduce to

R[’:mvl] = O* V{pR:mV = 0 (47)

where, however. covariant derivation and raising and lowering of indices no longer
commute. Therefore & in part 2 of (47) cannot simply be taken down. If within the concept
of stress space (47) is considered as the equilibrium equations, then the general solution
contains a nonmetricity tensor which represents the specific response to the presence of
geometric nonmetricity, i.¢. to point defects. This response has the quality of moment
stresses without torque.

5. CONCLUSION

In this work we have tried to show that differential geometry is a useful tool to deal
with certain types of solids with defects. We have restricted ourselves to solids with a
microscopically afline constitution. Such solids arce realized best by the Bravais crystals. We
have chosen this type of solid because itis relatively simple, and therefore also the differential
geometry used 1s simple. This s the well-explored geometry of locally afline spaces. Both
the geometry and the statics were discussed in terms of this geometry, making use of the
fundamental duality between strain space and stress space. This duality has its origin in the
general equations of mechanics where position and momentum are recognized as dual
quantitics. In this description the theory of the internal mechanical state achieves a very
high symmetry. It is amusing to think that this theory could have some relevance for a
theory of the universe which is a physical system in which we live as observers who pereeive
internal states only.

The theory shown here admits almost any extension. Solids with more complex (than
aftine) structure, and also liquid crystals can be described by a more involved geometry. In
all such theories defects play a fundamental role. and in fact they determine to a large
degree the material’s propertics.

A fundamental quantity in our theory is the connection I', which defines what is parallel
in the considered space. The wish, then, is natural to have a visual impression of this
paraliclism which somehow should be inherent in the material’s structure. For the Bravais
crystal the relation between the crystalline order and the law of puraliclism is immediate.
In crystallography and physics all vectors within one of the three sets of primitive lattice
vectors have always been considered as parallel. The required teleparaliclism implies that
il two vectors at distant points are parallel, then the parallelism has an absolute character.
This view was tuken by Kondo (1952) and by Bilby ¢f af. (1933).

The main characteristics of crystals, namely the existence of three primitive crystallo-
graphic directions and the countability of lattice steps entered our theory through the
definition of dislocation and point defect. We have not discussed these definitions in this
work. They become meaningless if we restrict ourselves to Ricmannian geometry. i.c. we
eliminate the defects. Hereby we also eliminate the crystallinity, which no longer enters the
theory. Now remember that the stresses occurring in the Riemannian case originated from
stress-free strain which, perhaps, should be classified as external rather than internal, When
doing so. then the line and point defects are the only sources of internal stress. but they do
not lead to uniquely defined strain (or metric). In fact. setting S = Q =0 and also R =0
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(teleparallelism), we have I' = {G] and the pertaining curvature vanishes. Under these
conditions the ¢ occurring in G may be any (symmetrized) gradient field. as for instance it
would arise if the crystal is deformed from outside. As internal observers we cannot perceive
such an outside deformation. For us, therefore, the strain can be subjected to some side
condition like divergence freedom. This is exactly and for the same reason the situation we
had with the stress function tensor ¢ which we have declared analogous to &. The last result,
namely the analogy also in the side conditions of strain and stress state. seems to support
our interpretation of defect theory in terms of differential geometry. This interpretation
states that from the standpoint of the internal observer both the statics and the geometry
(or kinematics) of affine structures (Bravais crystals) are described adequately by the
differential geometry of affinely connected spaces.
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